Rectangular Simplicial Semigroups
نویسندگان
چکیده
In [3] Bruns, Gubeladze, and Trung define the notion of polytopal semigroup ring as follows. Let P be a lattice polytope in R, i. e. a polytope whose vertices have integral coordinates, and K a field. Then one considers the embedding ι : R → R, ι(x) = (x, 1), and chooses SP to be the semigroup generated by the lattice points in ι(P ); the K-algebra K[SP ] is called a polytopal semigroup ring. Such a ring can be characterized as an affine semigroup ring that is generated by its degree 1 elements and coincides with its normalization in degree 1. The object of this paper are the polytopal semigroup rings given by the simplices ∆(λ1, . . . , λn) ⊂ R with vertices
منابع مشابه
-
In this paper we introduce R-right (left), L-left (right) cancellative and weakly R(L)-cancellative semigroups and will give some equivalent conditions for completely simple semigroups, (completely) regular right (left) cancellative semigroups, right (left) groups, rectangular groups, rectangular bands, groups and right (left) zero semigroups according to R-right (left), L-left (right) and weak...
متن کاملGenerating Simplicial Complexes
In the spirit of topological entropy we introduce new complexity functions for general dynamical systems (namely groups and semigroups acting on closed manifolds) but with an emphasis on the dynamics induced on underlying simplicial complexes. For expansive systems remarkable properties are observed. Known examples are revisited and new examples are presented.
متن کامل. A C ] 1 0 A pr 2 00 9 KOSZUL INCIDENCE ALGEBRAS , AFFINE SEMIGROUPS , AND STANLEY - REISNER IDEALS
We prove a theorem unifying three results from combinatorial homological and commutative algebra, characterizing the Koszul property for incidence algebras of posets and affine semigroup rings, and characterizing linear resolutions of squarefree monomial ideals. The characterization in the graded setting is via the Cohen-Macaulay property of certain posets or simplicial complexes, and in the mo...
متن کاملRegularization by free additive convolution, square and rectangular cases
The free convolution ⊞ is the binary operation on the set of probability measures on the real line which allows to deduce, from the individual spectral distributions, the spectral distribution of a sum of independent unitarily invariant square random matrices or of a sum of free operators in a non commutative probability space. In the same way, the rectangular free convolution ⊞ λ allows to ded...
متن کامل1 7 Ju n 20 13 Extremal norms for positive linear inclusions
For finite-dimensional linear semigroups which leave a proper cone invariant it is shown that irreducibility with respect to the cone implies the existence of an extremal norm. In case the cone is simplicial a similar statement applies to absolute norms. The semigroups under consideration may be generated by discrete-time systems, continuous-time systems or continuous-time systems with jumps. T...
متن کامل